MADE EASY&NEXT IRS GROUP

PRESENT

NEET | IIT-JEE | FOUNDATION

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Maximum Marks: 720

Time : 3 Hours

NEET (UG) – 2020

IMPORTANT INSTRUCTIONS

- 1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with blue/black ball point pen only.
- 2. The test is of 3 hours duration and Test Booklet contains **180** questions. Each question carries **4 marks**. For each correct response, the candidate will get **4 marks**. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are **720**.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
- 4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
- 6. The CODE for this Booklet is **P3**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Test Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
- 7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/Answer Sheet.
- 8. Use of white fluid for correction is **NOT** permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admit Card to the Invigilator.
- 10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over the Answer Sheet and dealt with as an unfair means case.
- **12.** Use of Electronic/Manual Calculator is prohibited.
- **13.** The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this Examination.
- 14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
- **15.** The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.

Section-I (BIOLOGY)

- 1. Identify the **wrong** statement with reference to transport of oxygen:
 - (1) Partial pressure of CO_2 can interfere with O_2 binding with haemoglobin
 - (2) Higher H^+ conc. in alveoli favours the formation of oxyhaemoglobin
 - (3) Low pCO_2 in alveoli favours the formation of oxyhaemoglobin
 - (4) Binding of oxygen with haemoglobin is mainly related to partial pressure of O_2
- 2. Which of the following refer to **correct** example(s) of organisms which have evolved due to changes in environment brough about by anthropogenic action?
 - (a) Darwin's Finches of Galapagos islands
 - (b) Herbicide resistant weeds
 - (c) Drug resistant eukaryotes
 - (d) Man-created breeds of domesticated animals like dogs
 - (1) (a) and (c) (2) (b), (c) and (d) (3) only (d) (4) only (a)
- 3. Which of the following is **not** an inhibitory substance governing seed dormancy?
 - (1) Abscisic acid (2) Phenolic acid (3) Para-ascorbic acid (4) Gibberellic acid

FOU

(4)

(a) and (b

4. Match the following diseases with the causative organism and select the **correct** option:

C	olumn – I	Column – II				
(a)	Typhoid	(i)	Wuchereria			
(b)	Pneumonia	(ii)	Plasmodium			
(c)	Filariasis	(iii)	Salmonella			
(d)	Malaria	(iv)	Haemophilus			

- (1) (a) (iii), (b) (iv), (c) (i), (d) (ii)
- (2) (a) (ii), (b) (i), (c) (iii), (d) (iv)
- (3) (a) -(iv), (b) -(i), (c) -(ii), (d) -(iii)
- (4) (a) -(i), (b) -(iii), (c) -(ii), (d) -(iv)
- 5. Select the **correct** events that occur during inspiration:
 - (a) Contraction of diaphragm (b) Contraction of external inter-costal muscles
 - (c) Pulmonary volume decreases (d) Intra pulmonary pressure increases
 - (1) (c) and (d) (2) (a), (b) and (d) (3) only (d)
- 6. The oxygenation activity of RuBisCo enzyme in photorespiration leads to the formation of:
 - (1) 1 molecule of 3 C compound (2) 1 molecule of 6 C compound
 - (3) 1 molecule of 4 C compound and 1 molecule of 2 C compound
 - (4) 2 molecules of 3 C compound

(1)

- 7. In light reaction, plastoquinone facilitates the transfer of electrons from:
 - (1) Cyt b_6 f complex to PS I (2) PS I to NADP⁺
 - (3) PS I to ATP synthase (4) PS II to cyt b_6 f complex
- 8. In gel electrophoresis, separated DNA fragments can be visualized with the help of:
 - Ethidium bromide in UV radiation (2) Acetocarmine in UV radiation
 - (3) Ethidium bromide in infrared radiation (4) Acetocarmine in bright blue light

9.	The ((1)	QRS complex in a s Depolarisation of		-	(2)	Depolarisation of	ventri	cles
	(3)	Repolarisation of	ventric	eles	(4)	Repolarisation of	auricl	es
10.		plant parts which co		•				
	(a)	Pollen grains insid		anther	(b)	-	-	n with two male gametes
	(c) (1)	Seed inside the fru (a), (b) and (c)	uit (2)	(c) and (d)	(d) (3)	Embryo sac insid (a) and (d)	e the o (4)	(a) only
11			, ,				(4)	(a) only
11.	(1)	infectious stage of <i>I</i> Sporozoites	lasmo	alum that enters the	(2)	Female gametocy	tes	
	(1)	Male gametocytes	3		(2)	Trophozoites		
12.		tify the incorrect st		nt:		Ĩ		
	(1)	•		conduction of wate	r and n	ninerals from root t	o leaf	
	(2)	Sapwood is the in	nermos	st secondary xylem	and is	lighter in colour		
	(3)	r -		nins, resins, oils etc			olour	2
	(4)			nduct water but give		hanical support		0
13.	• •	pers of Penguins and	-	hins are examples o				>
	(1) (3)	Convergent evolution	tion		(2) (4)	Industrial melasn Adaptive radiatio		
14	, í			with an forman on the the				ad anounce
14.	(1)	tify the wrong state A person will have		two of the three all		I that controls Af	SO 010	od groups:
	(1)	-	-	esent together, they	· · · · · ·	ss same type of sug	par	
	(3)	Allele 'i' does not			enpre			
	(4)	The gene (I) has the	hree al	leles	\sim	▼		
15.	Whic	ch of the following	stateme	ents are true for the	e phylu	ım – Chordata?		
	(a)			d extends from hea		*	through	hout their life
	(b)			is present during en	•	nic period only		
	(c) (d)		-	is dorsal and hollov 3 subphyla: Hemic		a Tunicata and Ca	nhaloc	hardata
	(u) (1)	(c) and (a)	(2)	(a) and (b)	(3)	(b) and (c)	(4)	(d) and (c)
16.	, í	ence of which of the					, í	
100	(1)	Uremia and Renal		-	(2)	Ketonuria and Gl		
	(3)	Renal calculi and	Hyper	glycaemia	(4)	Uremia and Keto	nura	
17.	The t	first phase of transla	ation is	:				
	(1)	Recognition of D	NA mo	lecule	(2)	Aminoacylation of	of tRN.	A
	(3)	Recognition of an	anti –	codon	(4)	Binding of mRN.	A to ril	oosome
18.		florets have:						
	(1)	Superior ovary	(2)	Hypogynous ovar	y (3)	Half inferior ovar	ry (4)	Inferior ovary
19.	-	process of growth is		•				
	(1)	Lag phase	(2)	Senescence	(3)	Dormancy	(4)	Log phase
20.		roots that originate				T (1 .		
	(1)	Primary roots	(2)	Prop roots	(3)	Lateral roots	(4)	Fibrous roots

21.	In water hyacinth and water lily,	· ·	•	
	 water currents only insects and water 	(2) (4)	,	
22.	Which of the following is put int (1) Floating debris	(2)) Effluents of prima	-
	(3) Activated sludge	(4)	ý <u> </u>	
23.	Bilaterally symmetrical and acoe (1) Platyhelminthes (2)	lomate animals are ex Aschelminthes (3)	1 2	(4) Ctenophora
24.	Identify the basic amino acid from		, 	
	2	Lysine (3)) Valine	(4) Tyrosine
25.	In which of the following techn conceive?	niques, the embryos	are transferred to ass	sist those females who cannot
		CST and ZIFT (3)) GIFT and ICST	(4) ZIFT and IUT
26.	Which of the following statemen	ts about inclusion bo	dies is incorrect ?	
	(1) These are involved in inge	-	s	
	(2) They lie free in the cytopla			
	(3) These represent reserve ma(4) They are not bound by any			
27.	Experimental verification of the		of inheritance was dor	he hy:
21.	-	Boveri (3)		(4) Mendel
28.	Select the option including all se	xually transmitted dis	seases:	
	(1) Gonorrhoea, Malaria, Gen	-		
	(3) Cancer, AIDS, Syphilis	(4)) Gonorrhoea, Syph	ilis, Genital herpes
29.	Which of the following statemen			
	 The proinsulin has an extra The functional insulin has 		•	handa
	(2) The functional insulin has(3) Genetically engineered ins			bollus
	(4) In man insulin is synthesiz		. con	
30.	Which is the important site of for		eins and glycolipids in	eukarvotic cells?
	(1) Peroxisomes	(2)	0, 1	
	(3) Polysomes	(4)) Endoplasmic retic	ulum
31.	Match the following columns and	d select the correct of	ption:	
	Column – I	Column – II		
	(a) <i>Clostridium butylicum</i>	(i) Cyclosporin	- A	
	(b) <i>Trichoderma polysporum</i>	(ii) Butyric acid		
	(c) <i>Monascus purpureus</i>	(iii) Citric acid		
	(d) Aspergillus niger	(iv) Citric acid		
	(1) (a) $-$ (ii), (b) $-$ (i), (c) $-$ (iv (2) (a) (i) (b) (ii) (c) (iv)			
	(2) (a) $-$ (i), (b) $-$ (ii), (c) $-$ (iv (3) (a) $-$ (iv), (b) $-$ (iii), (c) $-$ (
	(u) (u) (u) (u) = (u), (u) = (u), (u) = (u)	, (u) (l)		

(4) (a) - (iii), (b) - (iv), (c) - (ii), (d) - (i)

32.		ryological support f			-		<i>.</i>	
	(1)	Alfred Wallace	(2)	Charles Darwin	(3)	Oparin	(4)	Karl Ernst von Baer
33.		sequence that control	ols the	copy number of th				rmed:
	(1)	Ori site			(2)	Palindromic se	*	
	(3)	Recognition site			(4)	Selectable mar	rker	
34.	Whi	ch of the following						
	(1)	They have free RI		*	(2)	They have DN	*	
	(3)	They have free D	NA wi	thout protein coat	(4)	They have RN	A with pr	otein coat
35.	Mon	treal protocol was s	igned i	in 1987 for control	of:			
	(1)			pleting substances				
	(2)	Release of Green		•	(3)	Disposal of e -		
	(4)	Transport of Gene	etically	modified organism	ns fron	n one country to	another	
36.	The	number of substrate	e level j	phosphorylations in	n one tı	urn of citric acid	cycle is:	
	(1)	One	(2)	Two	(3)	Three	(4)	Zero
37.	Whie	ch of the following	hormo	nes levels will caus	se relea	se of ovum (ovu	lation) fr	om the graffian follicle?
	(1)	High concentration	on of Pi	rogesterone	(2)	Low concentra	ation of L	Н
	(3)	Low concentration	n of FS	SH	(4)	High concentra	ation of E	strogen
38.	Sele	ct the correct match	1:					
	(1)	Phenylketonuria -	- Autos	somal dominant tra	iit			
	(2)	Sickle cell anaem	ia – Aı	atosomal recessive	trait, c	hromosome – 11	l	
	(3)	Thalassemia – X						
	(4)	Haemophilia – Y	linked					
39.	Cubo	oidal epithelium wit	h brus	h border of microv	illi is fo	ound in:		
	(1)	ducts of salivary g	glands		(2)	proximal conv	oluted tub	oule of nephron
	(3)	eustachian tube			(4)	lining of intest	tine	
40.	Snov	v – blindness in Ant	tarctic	region is due to:				
	(1)	Inflammation of c	cornea	due to high dose of	f UV –	B radiation		
	(2)	High reflection of	-					
	(3)			l by infra – red ray				
	(4)	Freezing of fluids	in the	eye by low temper	rature			
41.	Whie	ch of the following	7	-	ae?			
	(1)	Gelidium and Gra		l and a second se	(2)	Anabaena and		
	(3)	Chlorella and Spi	rulina		(4)	Laminaria and	l Sargassi	ım
42.	The	transverse section o	f a pla	nt shows following	, anator	nical features:		
	(a)	-		ed vascular bundle		•	sheath	
	(b)		-	nchymatous ground			_	
	(c)	Vascular bundles	•		(d)	Phloem parent	chyma abs	sent
		tify the category of	-	nd its part:		D: 11		
	(1)	Monocotyledonou			(2)	Dicotyledonou		
	(3)	Dicotyledonous ro	oot		(4)	Monocotyledo	onous ster	n

(2) Cell is metabolically active, grow but does not replicate its DNA (3) Nuclear Division takes place (4) DNA synthesis or replication takes place Cross breeding (1) Mutational breeding (2) (3) Inbreeding (4) Out crossing Identify the wrong statement with reference to immunity. When ready-made antibodies are directly given, it is called "Passive immunity" (1) Active immunity is quick and gives full response. (2) (3) Foetus receives some antibodies from mother, it is an example for passive immunity. (4) "Active immunity". The specific palindromic sequence which recognized by EcoRI is: 5' - GGAACC - 3' 5' - CTTAAG - 3' (1) (2) 3' - CCTTGG - 5' 3' - GAATTC - 5' 5' - GGATCC - 3' 5' - GAATTC - 3' (3) (4) 3' - CCTAGG - 5' 3' - CTTAAG - 5' (1) 2.5 meters (2) 2.2 meters (3) 2.7 meters (4) 2.0 meters If the head of cockroach is removed, it may live for few days because: the cockroach does not have nervous system. (1) (2) of its body. (3) (4) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen. Match the trophic levels with their correct species examples in grassland ecosystem. Fourth trophic level Crow (a) (i) Second trophic level Vulture (b) (ii) First trophic level Rabbit (c) (iii) Third trophic level (d) (iv) Grass Select the correct option: **(a) (b)** (c) (d) (1) (ii) (iii) (i) (iv) (2) (iv) (iii) (ii) (i) (3) (i) (ii) (iii) (iv) (4) (ii) (iii) (iv) (i) Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com 6

- 43. How many true breeding pea plant varieties did Mendel select as pairs, which were similar except in one character with contrasting traits?
 - (1) 2 (2) 14 (3) 8 (4)
- **44**. Floridean starch has structure similar to:
 - (1) Amylopectin and glycogen (2) Mannitol and algin
 - (3) Laminarin and cellulose (4) Starch and cellulose
- 45. Identify the **correct** statement with regard to G_1 phase (Gap 1) of interphase:
 - Reorganisation of all cell components takes place (1)

46. By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams?

- 47.
 - When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called
- 48.

49. If the distance between two consecutive base pairs is 0.34 nm and the total number of base pairs of a DNA double helix in a typical mammalian cell is 6.6×10^9 bp, then the length of the DNA is approximately:

- 50.
 - the head holds a small proportion of a nervous system while the rest is situated along the ventral part
 - the head holds a 1/3rd of a nervous system while the rest is situated along the dorsal part of its body.
- 51.

- trypsinogen into trypsin (2)
- caseinogen into casein (3) pepsinogen into pepsin
- (4) protein into polypeptides
- 53. Identify the correct statement with reference to human digestive system.
 - Serosa is the innermost layer of the alimentary canal. (1)
 - Ileum is a highly coiled part. (2)
 - (3) Vermiform appendix arises from duodenum.

The enzyme enterokinase helps in conversion of:

- (4) Ileum opens into small intestine.
- 54. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop.

Gibberellin (1) Ethylene Abscisic acid (4) Cytokinin (2) (3)

- Identify the wrong statement with regard to Restriction Enzymes. 55.
 - (1) They cut the strand of DNA at palindromic sites.
 - (2) They are useful in genetic engineering.
 - (3) Sticky ends can be joined by using DNA ligases.
 - Each restriction enzyme functions by inspecting the length of a DNA sequence. (4)

56. Match the following:

- Inhibitor of catalytic activity (a)
- Possess peptide bonds (b)
- (c) Cell wall material in fungi
- (d) Secondary metabolite

Choose the correct option from the following: i JE

(a)	(b)	(c)	(d)
-----	-----	-----	-----

- (1) (iii) (i) (iv) (ii)
- (2) (iii) (iv) (i) (ii)
- (3) (ii) (iii) (i) (iv)
- (4) (ii)(iv) (iii) (i)

57. Goblet cells of alimentary canal are modified from:

- Columnar epithelial cells (1)
- Compound epithelial cells (3)
- (2) Chondrocytes
- (4) Squamous epithelial cells

58. Match the following columns and select the correct option.

Column -I

- 6 15 pairs of gill slits (a)
- Heterocercal caudal fin (b)
- Air Bladder (c)
- (d) Poison sting
 - **(a) (b)** (c) (d)
- (1) (iii) (iv) (i) (ii)
- (2) (iv) (ii) (iii) (i)
- (3) (ii) (i) (iv) (iii)
- (4) (ii) (iii) (iv) (i)

Column -II

- (i) Trygon
- Cyclostomes (ii)
- (iii) Chondrichthyes
- Osteichthyes (iv)

7

- Malonate Chitin

Ricin

- (ii) (iii)

(i)

- (iv) Collagen

52.

59.			• •		l complex occurs d	-			
	(1)	Zygotene	e	(2)	Diplotene	(3)	Leptotene	(4)	Pachytene
60.	Nam	•		cilitate	es opening of DNA	helix o	during transcription		
	(1)	DNA he	licase	(2)	DNA polymerase	(3)	RNA polymerase	(4)	DNA ligase
61.	Whic	ch of the fo	ollowing s	stateme	ents is correct?				
	(1)	Adenine	pairs with	n thym	ine through one H-l	oond.			
	(2)	Adenine	pairs with	ı thym	ine through three H	-bonds	5.		
	(3)	Adenine	does not	pair wi	th thymine.				
	(4)	Adenine	pairs with	n thym	ine through two H-	bonds.			
62.	Whic	ch of the fo	ollowing r	regions	of the globe exhibit	ts high	nest species diversit	y?	
	(1)	Madagas				(2)	Himalayas		
	(3)	Amazon	forests			(4)	Western Ghats of	India	
63.	Mate	h the follo	wing colu	umns a	nd select the correc	t optio	n.		
		Column	- I		Column -II				
	(a)	Pituitary	gland	(i)	Grave's disease			O ĭ	
	(b)	Thyroid	-	(ii)	Diabetes mellitus				
	(c)	Adrenal	-	(iii)	Diabetes insipidus				
	(d)	Pancreas		(iv)	Addison's disease				
		(a)	(b)	(c)	(d)		2		
	(1)	(iii)	(ii)	(i)	(iv)		S.		
	(2)	(iii)	(i)	(iv)	(ii)				
	(3) (4)	(ii)	(i)	(iv)	(iii)	X			
	(4)	(iv)	(iii)	(i)	(ii)				
64.	-			n catal	yzed by nitrogenas		ot nodules of legum		plants 1s/are :
	(1)	Nitrate a				(2) (4)	Ammonia and oxy	gen	
	(3)		ia and hyd	-	4	(4)	Ammonia alone		
65.			owing con				neir functions in pla	nts:	
	(a)	Iron		(i)	Photolysis of wate				
	(b)	Zinc Boron		(ii) (iii)	Pollen germination Required for chlor		higgunthesis		
	(c) (d)	Mangane		(iv)	IAA biosynthesis	орпуп	biosynthesis		
		t the corre			In the blos ynthesis				
		(a)	(b)	(c)	(d)				
	(1)	(iv)	(iii)	(ii)	(i)				
	(2)	(iii)	(iv)	(ii)	(i)				
	(3)	(iv)	(i)	(ii)	(iii)				
	(4)	(ii)	(i)	(iv)	(iii)				
66.	Whic	h of the fo	ollowing v	vould	help in prevention o	of diure	esis?		
	(1)	Reab	sorption c	of Na ⁺	and water from rer	nal tub	ules due to aldoster	one	
	(2)		-		or causes vasoconst				
	(3)	Decre	ease in se	cretion	of renin by JG cell	s			
	(4)	More	e water rea	absorpt	ion due to under se	cretior	n of ADH		

- 67. Meiotic division of the secondary oocyte is completed:
 - At the time of copulation (1)
 - After zygote formation (2)
 - (3) At the time of fusion of a sperm with an ovum
 - (4) Prior to ovulation
- 68. Match the following columns and select the correct option:

	Column – I	Co	Column – II		
(a)	Gregarious, polyphagous pest	(i)	Asterias		
(b)	Adult with radial symmetry and larva with bilateral symmetry	(ii)	Scorpion		
(c)	Book lungs	(iii)	Ctenoplana		
(d)	Bioluminescence	(iv)	Locusta		

- (1) (a) - (iv), (b) - (i), (c) - (ii), (d) - (iii)
- (2) (a) - (iii), (b) - (ii), (c) - (i), (d) - (iv)
- (3) (a) - (ii), (b) - (i), (c) - (iii), (d) - (iv)
- (4) (a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)
- **69**. Match the following columns and select the **correct** option:

(2 (3 (4 M	2) (5) (4) ((a) - (iii), (b) - (ii) (a) - (ii), (b) - (i), (a) - (i), (b) - (iii) the following colu), (c) - $(c) - (c) - ($	(i), (d) - (iv) (iii), (d) - (iv)	ION
Column – I Column – II					
	(a)	Floating Ribs	(i)	Located between second and seventh ribs	
	(b)	Acromion	(ii)	Head of the Humerus	
	(c)	Scapula	(iii)	Clavicle	
	(d)	Glenoid cavity	(iv)	Do not connect with the sternum	

- (1) (a) - (i), (b) - (iii), (c) - (ii), (d) - (iv)
- (2) (a) - (iii), (b) - (ii), (c) - (iv), (d) - (i)
- (3) (a) - (iv), (b) - (iii), (c) - (i), (d) - (ii)
- (a) (ii), (b) (iv), (c) (i), (d) (iii)(4)
- Secondary metabolities such as nicotine, strychnine and caffeine are produced by plants for their: 70.
 - Growth response (1) (2) Defence action
 - Effect on reproduction (4) Nutritive value (3)
- 71. Match the following columns and select the correct option:

		Column – I		Column – II
	(a)	Bt cotton	(i)	Gene therapy
	(b)	Adenosine deaminase deficiency	(ii)	Cellular defence
	(c)	RNAi	(iii)	Detection of HIV infection
	(d)	PCR	(iv)	Bacillus thuringiensis
(1) ((a) - (iii), (b) - (ii), (c) - (i), (d) - (i)	v)	(2) (a) – (ii), (b) – (iii), (c) – (iv), (d) – (i)
(3	5) ((a) - (i), (b) - (ii), (c) - (iii), (d) - (ii)	v)	(4) (a) $-(iv)$, (b) $-(i)$, (c) $-(ii)$, (d) $-(iii)$

- 72. From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask:
 - CH₃, H₂, NH₄ and water vapor at 800°C (1)
 - (2) CH₄, H₂, NH₃ and water vapor at 600 °C
 - CH₃, H₂, NH₃ and water vapor at 600°C (3)
 - (4) CH₄, H₂, NH₃ and water vapor at 800°C

74.

75.

76.

77.

78.

79.

80.

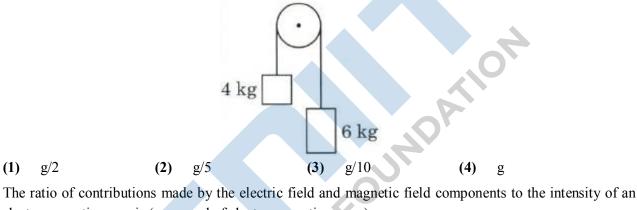
73. Match the organism with its use in biotechnology:

Match	the organism with its use in	biotechr	lology:					
(a)	Bacillus thuringiensis	(i)	Cloning vec	tor				
(b)	Thermus aquaticus	(ii)	Construction	n of first rDNA n	nolecule			
(c)	Agrobacterium tumefacien	s (iii)	DNA polym	nerase				
(d)	Salmonella typhimurium	(iv)	Cry proteins	3				
	the correct option from the f		-					
	(a) - (iv), (b) - (iii), (c) - (i),		·					
	a) $-$ (iii), (b) $-$ (ii), (c) $-$ (iv)							
	(a) - (iii), (b) - (iv), (c) - (i),							
(4) ((a) - (ii), (b) - (iv), (c) - (iii)	, (d) – (1)					
Bt cotto	on variety that was developed	l by the i	ntroduction o	ftoxin gene of Ba	acillus th	ringiensis (Bt) is resistant		
to:								
• •	Fungal diseases		(2)	Plant nematode	S			
(3) I	insect predators		(4)	Insect pests		2		
Choose	e the correct pair from the fo	ollowing	:					
``	Polymerases – Break the DN		e					
(2) Nuclease – Separate the two strands of DNA								
	Exonucleases – Make cuts at		-	thin DNA				
(4) I	Ligases – Join the two DNA	molecul	es					
The bo	dy of the ovule is fused with	in the fu	micle at:					
(1) 1	Micropyle (2) Nu	cellus	(3)	Chalaza	(4)	Hilum		
Strobili	i or cones are found in:							
(1) 1	Pteris (2) Ma	rchantic	a (3)	Equisetum	(4)	Salvinia		
Match	the following columns and s	elect the	correct opti	on:				
	Column – I		olumn – II]			
(a)	Eosinophils (i) Imm	une resp	onse		-			
(b)	Basophils (ii) Phag	ocytosis	5		-			
(c)	Neutrophils (iii) Relea	ase hista	minase, destr	ructive enzymes	-			
(d)	Lymphocytes (iv) Relea	ase gran	ules containii	ng histamine	-			
(1) (a) - (iv), (b) - (i), (c) - (ii), (c) -	(d) – (iii)		J			
(2) ((a) - (i), (b) - (ii), (c) - (iv), (c) -	(d) – (iii)					
(3) ((a) - (ii), (b) - (i), (c) - (iii), (c) - (ii), (c) -	(d) – (iv)					
(4) ((a) - (iii), (b) - (iv), (c) - (ii)	, (d) – (i)					
Identify	y the substances having glyce	osidic b	ond and pepti	de bond, respecti	vely in t	heir structure:		
(1)	Glycerol, trypsin		(2)	Cellulose, lecith	nin			
(3) I	nulin, insulin		(4)	Chitin, choleste	erol			
In relat	tion to Gross primary produc	ctivity a	nd Net prima	ry productivity o	of an eco	system, which one of the		
	ng statements is correct ?		r	J		, , , , , , , , , , , , , , , , , , ,		
	Gross primary productivity is		more then no	t primary produc	tivity.			

- (1) Gross primary productivity is always more than net primary productivity
- (2) Gross primary productivity and Net primary productivity are one and same
- (3) There is no relationship between Gross primary productivity and Net primary productivity
- (4) Gross primary productivity is always less than net primary productivity

81.	Match the following colu	mns and selec	t the correct opt	on.		
011	Column – I			nn – II		
	(a) Placenta	(i)	Androgens			
	(b) Zona pellucida	(ii)		ic Gonadotropin(hCG)	
	(c) Bulbo – urethral		Layer of the ov	A 1		
	(d) Leydig cells	(iv)	Lubrication of t			
	(1) (a) $-(i)$, (b) $-(iv)$,					
	(2) (a) $-$ (iii), (b) $-$ (ii)					
	(3) (a) $-$ (ii), (b) $-$ (iii)	(c) - (iv), (d)	(i)			
	(4) (a) $-$ (iv), (b) $-$ (iii)					
82.	Which of the following is	s not an attrib	ute of a populatio	n?		
0_1	(1) Natality	(2) Mortal		Species interact	ion (4)	Sex ratio
83.	Match the following colu		•			
05.	Column – I		Column -II	.011.		
		(i) Conne	cts middle ear ar	d phoremy		
				1 2		
			l part of the labyr red to the oval wi			
	(c) Eustachian tube					
	$(1) \qquad (2) \qquad (3) \qquad (3) \qquad (4) \qquad (5) \qquad (6) $		ed on the basilar	nembrane		
	(1) (a) $-$ (iii), (b) $-$ (i), (c) $-$ (i), (c) $-$ (c)					
	(2) (a) $-(iv)$, (b) $-(ii)$, (3) (a) (i) (b) (ii)					
	(3) (a) $-$ (i), (b) $-$ (ii), ((4) (a) $-$ (ii), (b) $-$ (iii)					
84.	Which one of the following	-	-			TT 1.1.'
	(1) Collagen	(2) Lectin	(3)	Insulin	(4)	Haemoglobin
85.	Match the following with	respect to me	eiosis:			
	(a) Zygotene	(i) Termir	nalization	K		
	(b) Pachytene	(ii) Chiasn	nata	•		
	(c) Diplotene		ng over			
	(d) Diakinesis	(iv) Synaps				
	Select the correct option t		wing:			
	(a) (b)	(c) (d)				
	(1) (iv) (iii)	(ii) (i)				
	(2) (i) (ii)	(iv) (i) (iv) (iii) (iii) (i)				
		()				
	(4) (iii) (iv)	(i) (ii)				
86.	According to Robert May	, the global sp	pecies diversity is	about:		
	(1) 20 million	(2) 50 mill	lion (3)	7 million	(4)	1.5 million
87.	The ovary is half inferior	in [.]				
0.1	(1) Mustard	(2) Sunflo	wer (3)	Plum	(4)	Brinjal
88.	Select the correct stateme				()	J
00.	(1) Glucagon is associa		oglycemia. (2)	Inculin acts on r	nonoronti	c cells and adipocytes.
	(1) Ondeagon is associate (3) Insulin is associate	• •				te gluconeogenesis.
00		•••••	•			
89.	The process responsible f	or tacilitating	loss of water in l	iquid form from t	he tip of	grass blades at night and
	in early morning is:	(A) T 1	· ·			т : .:
	(1) Root pressure	(2) Imbibi	tion (3)	Plasmolysis	(4)	Transpiration
90.	Some dividing cells exit t	the cell cycle a	and enter vegetati	ve inactive stage.	This is c	called quiescent stage (
	G_0). This process occurs	at the end of:		-		
	(1) G_1 phase	() S nhag				Multan
	$(\mathbf{I}) \mathbf{U}_1 \text{ prices}$	(2) S phase	e (3)	G, phase	(4)	M phase

94.


Section - II (PHYSICS)

91. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is:

(1)
$$\frac{3\pi}{2}$$
 rad (2) $\frac{\pi}{2}$ rad (3) zero (4) π rad

92. A long solenoid of 50 cm length having 100 turns carries a current of 2.5 A. The magnetic field at the centre of the solenoid is: $(\mu_0 = 4\pi \times 10^{-7} \text{ TmA}^{-1})$

- (1) $3.14 \times 10^{-4} \text{ T}$ (2) $6.28 \times 10^{-5} \text{ T}$ (3) $3.14 \times 10^{-5} \text{ T}$ (4) $6.25 \times 10^{-4} \text{ T}$
- **93.** Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless string. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity (g) is:

- electromagnetic wave is (e = speed of electromagnetic waves) (1) 1:1 (2) 1:c (3) $1:c^2$ (4) c:1
- **95.** In a certain region of space with volume 0.2 m³. The electric potential is found to be 5 V throughout. The magnitude of electric field in this region is:
 - (1) 0.5 N/C (2) 1 N/C (3) 5 N/C (4) Zero

96. The average thermal energy for a mono-atomic gas is: (k_B is Boltzmann constant and T, absolute temperature)

(1)
$$\frac{3}{2}k_{B}T$$
 (2) $\frac{5}{2}k_{B}Tc$ (3) $\frac{7}{2}k_{B}T$ (4) $\frac{1}{2}k_{B}T$

97. Find the torque about the origin when a force of $3\hat{j}N$ acts on a particle whose position vector is $2\hat{k}m$.

(1)
$$6\hat{j}Nm$$
 (2) $-6\hat{i}Nm$ (3) $6\hat{k}Nm$ (4) $6\hat{i}Nm$

98. The mean free path for a gas, with molecular diameter d and number density n can be expressed as:

(1)
$$\frac{1}{\sqrt{2 \, n \pi d^2}}$$
 (2) $\frac{1}{\sqrt{2} \, n^2 \pi d^2}$ (3) $\frac{1}{\sqrt{2} \, n^2 \pi^2 d^2}$ (4) $\frac{1}{\sqrt{2} \, n \pi d}$

99. The energy equivalent of 0.5 g of a substance is:

(1) 4.5×10^{13} J (2) 1.5×10^{13} J (3) 0.5×10^{13} J (4) 4.5×10^{16} J

100.	A screw g		count	of 0.01 mm and the	ere are	50 divisions in its	circul	ar scale. The pitch of the
	÷	25 mm	(2)	0.5 mm	(3)	1.0 mm	(4)	0.01 mm
101.	gas at s	standard tempera	ature a	· ·	compl	etely evacuated. T	-	ock. A contains and ideal tire system is thermally
		liabatic	(2)	isochoric	(3)	isobaric	(4)	isothermal
102.	A cylir	der contains h	ydroge	n gas at pressure	e of 2	249 kPa and temp	peratu	re 27°C. It density is:
		$3 \text{Jmol}^{-1} \text{K}^{-1}$						
	(1) 0	$2 \text{ kg}/\text{m}^3$	(2)	0.1 kg/m^3	(3)	0.02 kg/m^3	(4)	$0.5 \text{ kg}/\text{m}^3$
103.	When a	uranium isotope	²³⁵ ₉₂ U	is bombarded with	a neu	tron. It generates $\frac{89}{36}$	Kr, th	ree neutrons and:
	(1) ⁹ / ₄	l ₀ Zr	(2)	101Kr 36	(3)	¹⁰³ ₃₆ Kr	(4)	¹⁴⁴ 56 Ba
104.	A charg in $m^2 V$	$^{-1}s^{-1}$ of:						$^{-10}$ V m ⁻¹ , has a mobility
	(1) 2	$.5 \times 10^{6}$	(2)	2.5×10^{-6}	(3)	2.25×10^{-15}	(4)	2.25×10^{15}
105.		into account of th 98 m	ne sign (2)	ificant figures, wha 9.980 m	t is the (3)	value of 9.99 m – 9.9 m	0.0099 (4)	9 m? 9.9801 m
106.	An iron	rod of susceptibi	ility 59	9 is subjected to a r	nagnet	izing field of 1200	$A m^{-1}$. The permeability of the
	material	of the rod is: (µ	$u_0 = 4\pi$	$\times 10^{-7} \text{TmA}^{-1}$)				
	(1) 8	$.0 \times 10^{-5} \mathrm{TmA}^{-1}$	(2)	$2.4\pi \times 10^{-5} \text{TmA}^{-1}$	-1	(3)	2.4π	$10^{-7} \mathrm{TmA}^{-1}$ (4)
	2	$.4\pi \times 10^{-4} \text{TmA}^{-1}$	-1					
107.	A spher	ical conductor of	of radi	us 10 cm has a ch	arge o	of 3.2×10^{-7} C distribution	ibuted	uniformly. What is the
								$=9\times10^9\mathrm{Nm^2}/\mathrm{C^2}\right)$
	(1) 1	$.28 \times 10^5 \mathrm{N/C}$	(2)	$1.28 \times 10^{6} \mathrm{N/C}$	(3)	$1.28 \times 10^7 \text{N/C}$	(4)	$1.28 \times 10^4 \text{N/C}$
108.								om the circuit, the phase
	differen	ce between curre	ent and	voltage is $\frac{\pi}{3}$. If in	stead (C is removed from t	he cir	cuit, the phase difference
	is again	$\frac{\pi}{3}$ between curr	rent an	d voltage. The pow				
	(1) 0	.5	(1)	1.0	(3)	-1.0	(4)	Zero
109.	-	llary is 5 g. Ano					-	The mass of the water in e mass of water that will
		iis tube is:						

110. In Young's double slit experiment, if the separation between coherent sources is halved and the distance of the screen from the coherent sources is doubled, then the fringe width becomes: (1) half one - fourth double (2) four times (3) (4) **111.** For the logic circuit shown, the truth table is: В Y В Y Υ А В Y Α В A А 0 0 0 0 0 0 0 1 0 0 0 0 (1) (2) (3) (4) 1 1 0 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 1 0 1 1 1 1 1 1 **112.** The color code of a resistance is given below: Yellow Violet Brown Gold The values of resistance and tolerance, respectively are: 47 k $\Omega_{10\%}$ $4.7 \,\mathrm{k}\Omega$. 5% 470 k Ω , 5% $470\,\Omega$, 5% (1) (2) (3)(4) 113. The capacitance of a parallel plate capacitor with air as medium is $6\mu F$. With the introduction of a dielectric medium, the capacitance becomes $30 \,\mu\text{F}$. The permittivity of the medium is: ($\epsilon_0 = 8.85 \times 10^{-12} \text{C}^2 \text{N}^{-1} \text{m}^{-2}$) (2) $0.44 \times 10^{-10} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$ $1.77 \times 10^{-12} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$ (1) $5.00C^2N^{-1}m^{-2}$ (4) $0.44 \times 10^{-13} \text{ C}^2 \text{ N}^{-1} \text{m}^{-2}$ (3) 114. A ball is thrown vertically downward with a velocity of 20 m/s from the top of a tower. It hits the ground after some time with a velocity of 80 m/s. The height of the tower is: $(g=10m/s^2)$ (1)340 m (2) 320 m (3) 300 m (4) 360 m 115. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth? 32 N 30 N 24 N (1) (2) (3) (4) 48 N 116. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle is nearly at a distance of: 50 cm 67 cm 33 cm (1) (3) 80 cm (4) (3) 117. The increase in the width of the depletion region in a p - n junction diode is due to: (1) reverse bias only (2) both forward bias and revers bias increase in forward current forward bias only (3) (4) 118. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halved and intensity is doubled? one - fourth (1) four times (2) (3) zero (4) doubled

- 119. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whole objective has a diameter of 2m is: (1) 1.83×10^{-7} rad (2) 7.32×10^{-7} rad (3) 6.00×10^{-7} rad (4) 3.66×10^{-7} rad 120. A resistance wire connected in the left gap of metre bridge balances a 10 Ω resistance in the right gap at a point which divides the bridge wire in the ratio 3 : 2. If the length of the resistance wire is 1.5 m, then the length of 1 Ω of the resistance wire is: (3) 1.5×10^{-2} m (4) 1.0×10^{-2} m (2) $1.5 \times 10^{-1} \,\mathrm{m}$ $1.0 \times 10^{-1} \,\mathrm{m}$ (1) 121. Light with an average flux of 20 W / cm^2 falls on a non-reflecting surface at normal incidence having surface area 20 cm^2 . The energy received by the surface during time span of 1 minute is: (2) $24 \times 10^3 \text{ J}$ (3) $48 \times 10^3 \text{ J}$ $12 \times 10^{3} \text{ J}$ (4) $10 \times 10^3 \text{ J}$ (1) 122. A ray is incident at an angle of incidence i on one surface of a small angle prism (with angle of prims A) and emerges normally from the opposite surface. If the refractive index of the material of the prism is μ , then the angle of incidence is nearly equal to: (3) $\frac{\mu A}{2}$ (1) $\frac{2A}{4}$ **(2)** μA 123. A 40 µF capacitor is connected to a 200 V, 50 Hz ac supply. The rms value of the current in the circuit is, nearly: Iteally.(1) 2.05 A(2) 2.5 A(3) 25.1 A(4) 1.7 A124. Dimensions of stress are:(1) $[\text{ML}^2\text{T}^{-2}]$ (2) $[\text{ML}^0\text{T}^{-2}]$ (3) $[\text{ML}^{-1}\text{T}^{-2}]$ (4) $[\text{ML}\text{T}^{-2}]$ **125.** The Brewsters angle i_{b} for an interface should be: (4) $0^{\circ} < i_{b} < 30^{\circ}$ (1) $30^{\circ} < i_b < 45^{\circ}$ (2) $45^{\circ} < i_b < 90^{\circ}$ (3) $i_b = 90^{\circ}$ 126. A wire of length L, area of cross section A is hanging from a fixed support. The length of the wire changes to L_1 when mass M is suspended from its free end. The expression for Young's modulus is: (1) $\frac{Mg(L_1-L)}{AL}$ (2) $\frac{MgL}{AL_1}$ (3) $\frac{MgL}{A(L_1-L_2)}$ (4) $\frac{MgL_1}{AL}$ 127. A short electric dipole has a dipole moment of 16×10^{-9} Cm. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of 60° with the dipole axis is: $\left(\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ Nm}^2 / \text{C}^2\right)$ 200 V (3) (4) 50 V (1) (2) 400 V Zero 128. In a guitar, two string A and B made of same material are slightly out of tune and produce beats of frequency of 6 Hz. When tension in B is slightly decreased, the beat frequency increases to 7 Hz. If the frequency of A is 530 Hz, the original frequency of B will be: (1) 524 Hz 536 Hz (3) 537 Hz (4) 523 Hz (2)
 - **129.** An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is 1.227×10^{-2} nm, the potential difference is:

130. The solids which have the negative temperature coefficient of resistance are: (1) insulators only semiconductors only (2) (3) insulators and semiconductors (4) metals 131. The energy required to break one bond in DNA is 10^{-20} J. This value in eV is nearly: 0.006 (1) 0.6 (2) 0.06 (3) (4) 132. The quantities of heat required to raise the temperature of two solid copper spheres of radii r_1 and r_2 $(r_1 = 1.5 r_2)$ through 1 K are in the ratio: 9/4 (1) (2) 3/2(3) 5/3(4) 27/8133. Which of the following graph represents the variation of resistivity (ρ) with temperature (T) for copper? (2) (1) (3)ρ (4) T Т T 134. For transistor action, which of the following statements is correct? (1) Base, emitter and collector regions should have same size Both emitter junction as well as the collector junction are forward biased (2) The base region must be very thin and lightly doped (3) (4) Base, emitter and collector regions should have same doping concentrations **135.** For which one of the following, Bohr model is **not** valid? Singly ionized helium atom (He^+) (1) (2) Deuteron atom Singly ionized neon atom (Ne^+) (3) (4) Hydrogen atom Section - III (CHEMISTRY) 136. What is the change in oxidation number of carbon in the following reaction? $CH_4(g) + 4Cl_2(g) \rightarrow CCl_4(l) + 4HCl(g)$ (2) -4 to +4(1) 0 to + 4(3) 0 to - 4(4) +4 to +4137. On electrolysis of dil.sulphuric acid using Platinum (Pt) electrode, the product obtained at anode will be: (1) Oxygen gas (2) H₂S gas (3) SO_2 gas (4) Hydrogen gas **138.** An increase in the concentration of the reactants of a reaction leads to change in: heat of react ion threshold energy (3) collision frequency(4) (1) (2) activation energy 139. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as: Cannizzaro's reaction Cross Cannizzaro's reaction (1) (2) Cross Aldol condensation (4) Aldol condensation (3) 140. Which of the following alkane cannot be made in good yield by Wurtz reaction? (1) 2,3-Dimethylbutane n-Heptane (2)

	(3) n-Butane			(4)	n-Hexane					
141.		the following	-	polymer?						
	(1) poly (Butadiene-styrene)				(2)	polybutadiene				
	(3) poly (Butadiene-acrylonitrile)				(4)	cis-1,4-polyisopre				
142.							Ar. If	the total pressure of the		
		-	-			pressure of N_2 is:				
		nic masses (in			(3)					
	()	1) 12 bar (2) 15 bar				18 bar	(4)	9 bar		
143.		Match the following and identify the correct option.								
		$D(g) + H_2(g)$			(i)	$Mg(HCO_3)_2 + Ca(HCO_3)_2$				
		mporary hard	ness of wate	r	(ii)	An electron deficient hydride				
		H ₆			(iii)	Synthesis gas				
	(d) H ₂	2 ⁰ 2			(iv)	Non-planar structu	ire	2		
	(1)	(a) (iii)	(b)	(c) (i)	(d)	Non-planar struct)		
	(1) (2)	(iii) (iii)	(ii) (iv)	(i) (ii)	(iv) (i)		\leq			
	(2)	(ii)	(iv)	(ii)	(iv)					
	(4)	(iii)	(i)	(ii)	(iv)					
144.	For the re	For the reaction, $2Cl(g) \rightarrow Cl_2(g)$, the correct option is:								
	-	(3) $\Delta_r H < 0$ and $\Delta_r S < 0$ (4) $\Delta_r H > 0$ and Δ								
145.	An eleme	n element has a body centered cubic (bcc) structure with a cell edge of 288 pm. The atomic radius is:								
	(1) $\frac{1}{4}$	– × 288 pm	(2) $-\sqrt{3}$	= × 288 pm	(2)	$\frac{4}{\sqrt{2}}$ × 288 pm	(4)	$\frac{1}{4}$ × 288 pm		
146.	Urea read	ts with water	to form A w	hich will de	ecompose	to form B. B when	passec	l through Cu2+(aq), deep		
		blue colour solution C is formed. What is the formula of C from the following?								
	(1) [C	$u(NH_3)_4]^{2+}$	(2) Cu	u(OH),	(3)	CuCO ₃ .Cu(OH) ₂	(4)	CuSO₄		
147.		5				le followed by hydr		1		
17/.		c. butyl alcoho		iryimagnesit	(2)	Tert. butyl alcoho		will give.		
		butyl alcohol			(4)	Isopropyl alcohol	-			
148.	The follo	e following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP								
		d with Na, is responsible for the transmission of nerve signals.								
	(1) Co	pper	(2) Ca	lcium	(3)	Potassium	(4)	Iron		
149.	The num	ber of protons	neutrons a	nd electrons	in ¹⁷⁵ Lu	respectively, are:				
/ •		4, 71 and 71		, 71 and 104	/1	175, 104 and 71	(4)	71, 104 and 71		
150.						ipole moment?	(-)	,		
130.		-				de, 1,3-dichloroben	zene			
						,3-dichlorobenzene				
		ron trifluoride	e, beryllium	difluoride, c	arbon dio	xide, 1,4-dichlorob	enzene	2		

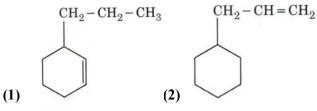
- (4) Ammonia, beryllium difluoride, water, 1,4-dichlorobenzene
- **151.** Identify a molecule which does not exist.
 - (1) Li_2 (2) C_2 (3) O_2 (4) He_2
- **152.** Identify the incorrect match.

	Name	IUPAC Official Name]
(a)	Unnilunium	(i)	Mendelevium	
(b)	Unniltrium	(ii)	Lawrencium	1
(c)	Unnilhexium	(iii)	Seaborgium]
(d)	Unununnium	(iv)	Darmstadtium	1
(1)	(b), (ii)	(2) (c), (iii) (3	i) (d), (iv) (4) (a), (i)

153. The rate constant for a first order reaction is $4.606 \times 10^{-3} \text{ s}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is:

(3)

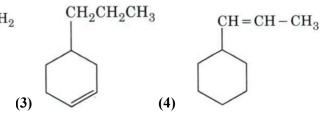
1000 s


100 s

(4)

- (1) 200 s (2) 500 s
- **154.** Identify the correct statement from the following:
 - (1) Blister copper has blistered appearance due to evolution of CO_2 .
 - (2) Vapour phase refining is carried out for Nickel by Van Arkel method.
 - (3) Pig iron can be moulded into a variety of shapes.
 - (4) Wrought iron is impure iron with 4% carbon.
- 155. Measuring Zeta potential is useful in determining which property of colloidal solution?
 - (1) Solubility (2) Stability of the colloidal particles
 - (3) Size of the colloidal particles (4) Viscosity

156. Which of the following oxoacid of sulphur has -O - O - linkage?


- (1) H_2SO_4 , sulphuric acid (2) $H_2S_2O_8$, peroxodisulphuric acid
- (3) $H_2S_2O_7$, pyrosulphuric acid (4) H_2SO_3 , sulphurous acid
- 157. Elimination reaction of 2-Bromo-pentane to form pent-2-ene is:
 - (a)β-Elimination reaction(b)Follows Zaitsev rule
 - (c) Dehydrohalogenation reaction (d) Dehydration reaction
 - (1) (a), (c), (d) (2) (b), (c), (d) (3) (a), (b), (d) (4) (a), (b), (c)
- **158.** Identify the correct statements from the following:
 - (a) CO_2 (g) is used as refrigerant for ice-cream and frozen food.
 - (b) The structure of C_{60} contains twelve six carbon rings and twenty five carbon rings.
 - (c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline.
 - (d) CO is colorless and odourless gas.
 - (1) (a) and (c) only (2) (b) and (c) only
 - (3) (c) and (d) only (4) (a), (b) and (c) only
- **159.** An alkene on ozonolysis gives methanal as one of the product. Its structure is:

- 160. Paper chromatography is an example of:
 - Partition chromatography (1)
 - Column chromatography (3)
- **161.** Match the following:

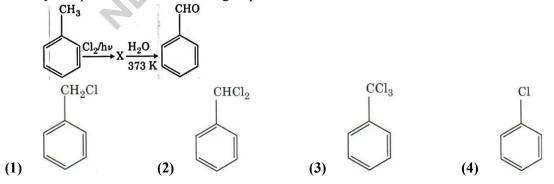
	Oxide		Nature				
(a)	CO	(i)	Basic				
(b)	BaO	(ii)	Neutral				
(c)	Al ₂ O ₃	(iii)	Acidic				
(d)	Cl ₂ O ₇	(iv)	Amphoteric				
Which of the following is correct option?							

	(a)	(b)	(c)	(d)
(1)	(ii)	(i)	(iv)	(iii)
(2)	(iii)	(iv)	(i)	(ii)
(3)	(iv)	(iii)	(ii)	(i)
(4)	(i)	(ii)	(iii)	(iv)

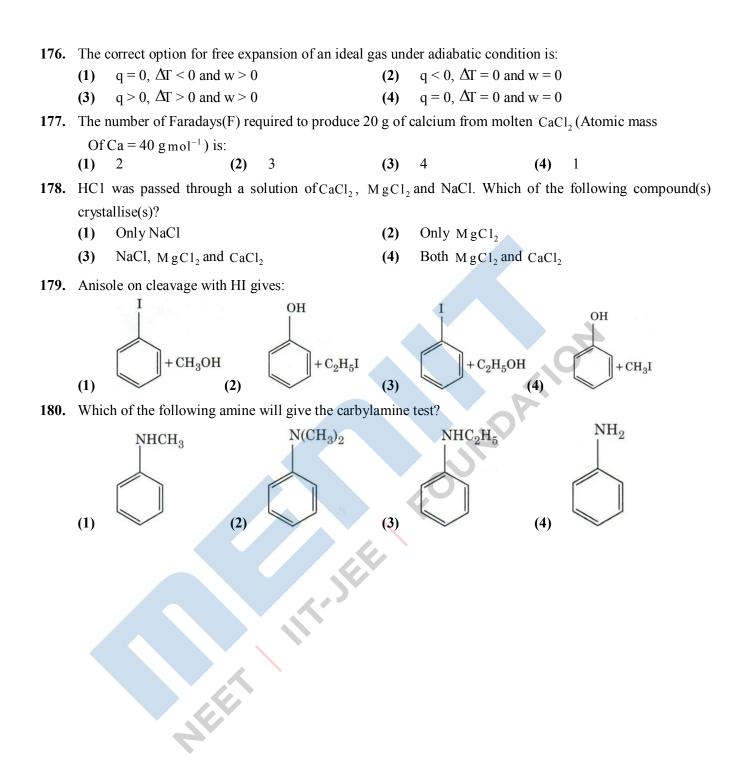
- Thin layer chromatography (2)
- Adsorption chromatography (4)

	(b)	BaO	(11)	Neutral					
	(c)	Al_2O_3	(iii)	Acidic					
	(d)	Cl ₂ O ₇	(iv)	Amphoteric				2	
	Which	of the follo	wing is co	orrect option?			ATI)	
		(a) (b)	(c) (c	l)					
	(1)	(ii) (i)	(iv) (ii	ii)					
	(2)	(iii) (iv)	(i) (i	i)					
	(3)	(iv) (iii)	(ii) (i	i)					
	(4)	(i) (ii)	(iii) (i	<u>v)</u>					
162.			0	as maximum r					
	. ,	• • • •		hass of $Mg = 24$	4] (2)	$1 \text{ g of } O_2(g)$ [-	
	(3) 1	g of Li(s) [A	Atomic ma	ass of $Li = 7$]	(4)	1 g of Ag(s) [4	Atomic ma	ass of $Ag = 108$]	
163.	Which o	of the follow	ing is a ba	sic amino acid	?				
	(1) A	lanine	(2)	Tyrosine	(3)	Lysine	(4)	Serine	
164.	The calculated spin only magnetic moment of Cr^{2+} ion is:								
	(1) 4	.90 BM	(2)	5.92 BM	(3)	2.84 BM	(4)	3.87 BM	
165.	Sucrose	on hydrolys	is gives:						
	(1) α	-D-Glucose	+ β-D-Gl	ucose	(2)	α -D-Glucose	+ β - D-Fru	ictose	
	(3) α	-D-Fructose	+ β-D-Fr	uctose	(4)	β-D-Glucose	+ α -D-Fru	ictose	
166.	The mix	ture which s	shows pos	itive deviation	from Raou	lt's law is:			
		enzene + To			(2)	Acetone + Ch	loroform		
	(3) C	hloroe thane	e + Bromo	ethane	(4)	Ethanol-I-Ace	etone		
167.	A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the								
	following?								
	(1) +	R effect of -	· CH ₃ grou	ıps	(2)	-R effect of-C	H ₃ groups	3	
	(3) H	lyperconjuga	tion		(4)	-1 effect of - (CH ₃ groups	S	
168.	Find out	t the solubili	ty of Ni((OH), in 0.1M N	NaOH. Give	en that the ionic	product of	$f Ni(OH)_2$ is 2×10^{-15} .	
		$\times 10^{-8} M$	(2)	$1 \times 10^{-13} \mathrm{M}$	(3)	$1 \times 10^8 M$	(4)	$2 \times 10^{-13} \mathrm{M}$	
169.	Which o	of the follow	ing is a ca	tionic deterger	nt?				

Which of the following is a cationic detergent? 169.


- (1) Sodium stearate (2) Cetyltrimethyl ammonium bromide
- (3) Sodium dodecylbenzene sulphonate (4)
- **170.** The freezing point depression constant (K_f) of benzene is 5.12 K kg mol⁻¹. The freezing point depression for the solution of molality 0.078 m containing a non-electrolyte solute in benzene is (rounded off up to two decimal places):
 - (1) 0.80 K (2) 0.40 K (3) 0.60 K (4) 0.20 K
- **171.** Identify the incorrect statement.
 - (1) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes.
 - (2) Interstitial compounds are those that are formed when small atoms like H, C or N are trapped inside the crystal lattices of metals.
 - (3) The oxidation states of chromium in CIO_4^{2-} and $Cr_2O_7^{2-}$ are not the same.
 - (4) $\operatorname{Cr}^{2+}(d^4)$ is a stronger reducing agent than $\operatorname{Fe}^{2+}(d^6)$ in water.
- 172. Which of the following is not correct about carbon monoxide?
 - (1) It reduces oxygen carrying ability of blood.
 - (2) The carboxyhaemoglobin (haemoglobin bound to CO) is less stable than oxy haemoglobin.
 - (3) It is produced due to incomplete combustion.
 - (4) It forms carboxyhaemoglobin.
- **173.** Hydrolysis of sucrose is given by the following reaction. Sucrose + $H_2O \Rightarrow Glu \cos e + Fructose$

If the equilibrium constant (K_c) is 2×10^{13} at 300 K, the value of $\Delta_r G^-$ at the same temperature will be:


- (1) 8.314 J mol⁻¹K⁻¹ × 300K × ln(2×10¹³) (2) 8.314 J mol⁻¹K⁻¹ × 300K × ln(3×10¹³)
- (3) $-8.314 \text{ J} \text{ mol}^{-1}\text{K}^{-1} \times 300\text{K} \times \ln(4 \times 10^{13})$ (4) $-8.314 \text{ J} \text{ mol}^{-1}\text{K}^{-1} \times 300\text{K} \times \ln(2 \times 10^{13})$
- **174.** Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
 - (1) $SCN^- < F^- < CN^- < C_2O_4^{2--}$
 - (3) $CN^- < C_2 O_4^{2-} < SCN^- < F^-$
- (2) $F^{-} < SCN^{-} < C_2O_4^{2-} < CN^{-}$ (4) $SCN^{-} < F^{-} < C_2O_4^{2-} < CN^{-}$

Sodium lauryl sulphate

175. Identify compound X in the following sequence of reactions:

ANSWER KEY

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	IISTRY 2 1 3 2 4 2 4 3 4 1 2 4 3 4 3 4 3 4 3 4 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	3 2 4 2 4 3 4 1 2 3 4 3 4 3 4 3 4 3 4 3 2 3 4 3 2 3 2 3 2 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 2 4 2 4 3 4 1 2 3 4 3 4 3 4 3 4 3 2 3 2 3 2 3 2 3 2 3 2 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 4 2 4 3 4 1 2 3 4 3 4 3 4 3 2 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	2 4 2 4 3 4 1 2 3 4 3 4 3 4 3 2 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 2 4 3 4 1 2 3 4 3 4 3 4 3 2 3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4 3 4 1 2 3 4 3 4 3 2 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 3 4 1 2 3 4 3 4 3 2 3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4 1 2 3 4 3 4 3 4 3 2 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 1 2 3 4 3 4 3 4 3 2 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	2 3 4 3 4 3 2 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	3 4 3 4 3 2 3
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 3 4 3 2 3
Q 14 2 Q 59 2 Q 104 1 Q 149 Q 15 3 Q 60 3 Q 105 1 Q 150 Q 16 2 Q 61 4 Q 106 4 Q 151 Q 17 2 Q 62 3 Q 107 1 Q 152 Q 18 4 Q 63 3 Q 108 2 Q 153 Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	3 4 3 2 3
Q 15 3 Q 60 3 Q 105 1 Q 150 Q 16 2 Q 61 4 Q 106 4 Q 151 Q 17 2 Q 62 3 Q 107 1 Q 152 Q 18 4 Q 63 3 Q 108 2 Q 153 Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	4 3 2 3
Q 16 2 Q 61 4 Q 106 4 Q 151 Q 17 2 Q 62 3 Q 107 1 Q 152 Q 18 4 Q 63 3 Q 108 2 Q 153 Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	4 3 2 3
Q 17 2 Q 62 3 Q 107 1 Q 152 Q 18 4 Q 63 3 Q 108 2 Q 153 Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	2 3
Q 18 4 Q 63 3 Q 108 2 Q 153 Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	2 3
Q 19 4 Q 64 3 Q 109 2 Q 154 Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	
Q 20 4 Q 65 2 Q 110 2 Q 155 Q 21 4 Q 66 1 Q 111 4 Q 156	n
	2
	2
Q 22 3 Q 67 3 Q 112 3 Q 157	4
Q 23 1 Q 68 1 Q 113 2 Q 158	3
Q 24 2 Q 69 3 Q 114 3 Q 159	2
Q 25 4 Q 70 2 Q 115 1 Q 160	1
Q 26 1 Q 71 4 Q 116 2 Q 161	1
Q 27 3 Q 72 4 Q 117 1 Q 162	3
Q 28 4 Q 73 1 Q 118 3 Q 163	3
Q 29 2 Q 74 4 Q 119 4 Q 164	1
Q 30 2 Q 75 4 Q 120 1 Q 165	2
Q 31 1 Q 76 4 Q 121 2 Q 166	4
Q 32 4 Q 77 3 Q 122 2 Q 167	3
Q 33 1 Q 78 4 Q 123 2 Q 168	4
Q 34 1 Q 79 3 Q 124 3 Q 169	2
Q 35 1 Q 80 1 Q 125 2 Q 170	2
Q 36 1 Q 81 3 Q 126 3 Q 171	3
Q 37 4 Q 82 3 Q 127 1 Q 172	2
Q 38 2 Q 83 2 Q 128 1 Q 173	4
Q 39 2 Q 84 1 Q 129 3 Q 174	4
Q 40 1 Q 85 1 Q 130 3 Q 175	2
Q 41 3 Q 86 3 Q 131 2 Q 176	4
Q 42 4 Q 87 3 Q 132 4 Q 177	4
Q 43 2 Q 88 4 Q 133 2 Q 178	1
Q 44 1 Q 89 1 Q 134 3 Q 179	4
Q 45 2 Q 90 4 Q 135 3 Q 180	4

DETAILED SOLUTION

Section-I (BIOLOGY)

Column –I

1. (2)

In the alveoli, high pO_2 , low pCO_2 , lesser H⁺ concentration and lower **temperature** are all favourable for the formation of oxyhaemoglobin.

2. (2)

The organisms that have evolved due to changes in the environment by anthropogenic actions are herbicide resistant weeds, drug resistant eukaryotes ad domesticated animals like dogs.

3. (4)

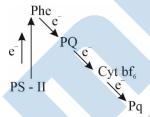
Gibberellic acid breaks seed dormancy, so cant inhibit dormancy.

4. (1)

Column – II

- (a) Typhoid (iii) Salmonella
- (b) Pneumonia (iv) Haemophilus
- (c) Filariasis (i) Wuchereria
- (d) Malaria (ii) Plasmodium

5. (4)


Correct events that occur during inspiration are contraction of diaphragm and external intercostal muscles.

6. (1)

The oxygenase activity RuBisCo is photorespiration lead to formation of 1 molecule of 3 phosphoglyceric acid and 1 molecule of 2C compound phosphoglycolic acid

7. (4)

Pastoquinone facilitates transfer of electron from reaction centre PS – II to cyto chrome $b_6 - f$ complex.

8. (1)

Ethidium bromid is or UV radiation give orange color DNA fragments.

- 9. (2)
 - The QRS complex in standard ECG represents depolarization of ventricles.

10. (3)

Both pollen grain and embryo sac are male and female gematophyte. Consisting of two generations.

11. (1)

The infectious stage of *Plasmodium* that enters the human body is sporozoites.

12. (2)

Sapwood lies on the peripheral side and heart wood on inner most or in the central cylinder.

13. (1)

Flippers of Penguins and Dolphins are examples of convergent evolution.

14. (2)

I^A produces galactosamine sugar and I^B produces galactose sugar.

15. (3)

In Urochordata notochord is present in the tail region of larva and absent in adult. In vertebrate notochord is present during the embryonic period only and later replaced by vertebral column. In Phylum Chordata central nervous system is dorsal and hollow.

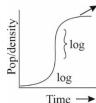
Chordata is divided into three sub-phyla: Cephalochordata, Urochordata and Vertebrata.

16. (2)

Presence of conditions like ketonuria and glycosuria in urine are indicative of Diabetes Mellitus.

17. (2)

The first phase of translation is amynoacylation of tRNA


- (a) $AA(aminoacid) + ATP + E \xrightarrow{Mg^{+2}} AA \sim AMP = E + PPi$
- (b) $AA \sim AMP E + tRNA \longrightarrow AA \sim tRNA + AMP + E$
- 18. (4)

Ray florests of sunflower have inferior or epigynous as above the ovary all other floral parts are present.

19. (4)

The maximum growth occurs during the log or exponetial phase.

Steady Phase

20. (4)

The roots that originate from the base of the stem are fibrous roots.

21. (4)

In water hyacinth and water lily although they are aquatic but floating so pollination takes place by insect or

22. (3

Activated sludge is put into anaerobic sludge digester for further sewage treatment.

23. (1)

Platyhelminthes are bilaterally symmetrical and acoelomate animals. Aschelminthes are pseudocoelomate and bilaterally symmetrical animals. Annelids are schizocoelomic and bilaterally symmetrical Ctenophora are acoelomate and radially symmetrical.

24. (2)

Basic amino acid is Lysine. Glutamic acid is acidic. Valine and tyrosine are neutral amino acids.

25. (4)

ZIFT and IUT are the techniques in which embryos are transferred to assist those females who cannot conceive.

26. (1)

Inclusion bodies are non – living structures present in cytoplasm where food, chemical compounds, gases are stored but no digestion takes place.

27. (3)

Morgan has given expperimental verifications of the chromosomal theory of inheritance.

28. (4)

Gonorrhoea, Syphilis and Genital herpes are all sexually transmitted diseases.

29. (2)

In man insulin is present as proinsulin with C peptide chain and A and B peptide chaens are linked with di sulphide bonds.

30. (2)

The formation of glycoproteins and glycolipids in eukaryotic cells occur in Golgi bodies.

- 31. (1)
 - Column I
 - (a) *Clostridium butylicum*
 - (b) Tricoderma polysporum
 - (c) Monascus purpureus
 - (d) Aspergillus niger

- Column II
- (ii) Butyric acid
- (i) Cyclosporin- A
- (iv) Blood cholesterol lowering agent
- (iii) Citric acid

32. (4)

Embryological support for evolution was disapproved by Karl Ernst von Bear.

33. (1)

The ori or origin of replication is the sequence from where replication starts and any piece of DNA when linked to this sequence can be roots to replicate within the last cells. It is also responsible for controlling the copy number of linked DNA.

34. (1)

Viroids have only RNA without protein and infects only plants.

35. (1)

Montreal protocol was signed in 1987 for control of emission of ozone depleting substances.

36. (1)

The number of substrate level phosphorylation in Krebs cycle is one.

37. (4)

High concentration level of Estrogen hormone will cause release of ovum from the Graafian follicle.

38. (2)

Phenylketonuria is an autosomal recessive desease, Thalassemia is an autosomal disorder and Haemophilia is X – linked recessive disorder sickle cell anaemia is autosomal recessive disorder.

39. (2)

Cuboidal epithelium with brush border of microvilli is found in proximal convoluted tubule of nephrons.

40. (1)

Snow-blindness in Antarctica region is due to inflammation of cornea due to high dose of UV-B radiation.

41. (3)

Chlorella and spirullina are unicellular and Anabaena is cyanobacteria rest are multicellular.

42. (4)

In monocots stem vascular bles are scattered without cambium, hence closed, ground tissue have cortex only and phloem paranchyma are absent.

43. (2)

There are 7 pairs of contrasting character so true breeding varieties are $7 \times 2 = 14$

44. (1)

Floridean starch are composed of amylopectin and glycogen.

45. (2)

In G1 phase of interphase the cell is metabolically active, grows but does not replicate its DNA.

46. (2)

A new breed of Hisardale, by using Bikaneri ewes and Marino rams was produced by cross breeding technique.

47. (2)

Active Immunity does not happen immediately upon disease exposure. It can take days or weeks after the first exposure for active immunity to develop. But once it does so, the protection can last an entire lifetime.

NUN

48. (4)

Eco RI cuts at giving sticky ends. 5'GA ATTC3' 3'CTTA AG 5'

49. (2)

Length = No. of base pairs \times distance between base pairs

```
= 6 \times 10^9 \text{ pb} \times 0.34 \times 10^{-9} \text{ m} = 2.2 \text{ meters}
```

50. (2)

If the head of cockroach is removed, it may live for few days because the head holds a small proportion of nervous system while the rest is situated along the ventral part of its body.

51. (4)

$Grass \rightarrow$	Rabbit \rightarrow	$Crow \rightarrow$	Vulture \rightarrow
T ₁	T ₂	T ₃	T ₄

First trophic level 2nd trophic level 3rd trophic level 4th trophic level

52. (1)

The enzyme enterokinase help in conversion of trypsinogen into trypsin.

53. (2)

Ileum is the highly coiled part of small intestine.

Gibberellin increases the length of the dwarf plant when sprayed.

(1)

54.

55. (3)

These enzymes are called genetic gum. They join two individual fragment of dsDNA by forming phosphodiaster bonds between them they help in sealing the gaps mDNA fragments.

56. (4)

- Inhibitor of catalytic activity (a)
- Possess peptide bond (b)
- Cell wall material in fungi (c)
- (d) Secondary metabolite

57. (1)

Goblet cells of alimentary canal are modified form of columnar epithelial cells.

58. (4)

Column – I

- (a) 6-15 pairs of gill slits
- (b)
- (c)

- Malonate (ii) (iv) Collagen
- (iii) Chitin
- (i) Ricin

- Heterocercal caudal fin
- Air bladder
- (d) Poison sting

- Column II
- (ii) Cyclostomes
- Chondrichthyes (iii)
- (iv) Osteichthyes
- Trygon (i)

59. (2)

Dissolution of synaptonemal complex occurs during Diplotene stage of Prophase I.

60. (3)

Enzyme that facilitates opening of helix during transcription is RNA polymerase

61. (4)

Adenine pairs with thymine with the help of 2H bonds.

62. (3)

Amazon forests falls in tropical rain forest where there is no seasoal variation, so it have highest diversity called as lungs of the planet.

63. (2)

Column – I

- Pituitary Gland (a)
- (b) Thyroid Gland
- (c) Adrenal Gland
- (d) Pancreas

Column – II

- (iii) Diabetes insipidus
- (i) Grave's disease
- (iv) Addison's disease
- Diabetes mellitus (ii)

64. (3)

The reaction catalysed by nitrogenase in root noduler of leguminous plants is ammonia and hydrogen.

65. (2)

Iron required in synthesis of chlorophyll, Mn is the main photolytic reagent, Boron is for pollen germination and zinc is the precursor for auxin of IAA biosynthesis.

66. (1)

Reabsorption of Na⁺ and water from renal tubules due to aldosterone would help in prevention of diuresis.

67. (3)

Meiotic division of the secondary oocyte in completed at the time of fusion of a sperm with an ovum.

68. (1)

Column – I

Column – II

- (a) Gregarious, polyphagus pest
- (b) Adult with radial symmetry and Larva with bilateral symmetry
- (c) Book lungs
- (d) Bioluminescence

69. (3)

Column – I

- (a) **Floating Ribs**
- (b) Acromion
- (c) Scapula
- (d) Glenoid cavity

70. (2)

Secondary metabolities of plants are for defence i.e. to protect from herbivores

71. (4)

- (a) Bt cotton – Bacillus thuringensis
- (c) RANi for cellular defence
- Adenosinase for gene therapy deaminase (b)
- (d)

(iv) Locusta

Column – II

(i)

(ii)

(iii)

(iv)

(iii)

(i)

(ii)

Asterias

Scorpion

Clavicle

Ctenoplana

72. (4)

S. L. Miller produced amino acids by mixing the CH₄, H₂, NH₃ and water vapours at 800° C in his experiment.

73. (1)

- (a) B. thuringensis - cry proteins
- (b) *Thermocossus aquaticus* – DNA polymerase
- (c) Agrobacterium tumefaciens \rightarrow cloning vector
- Salmonella typhimurium \rightarrow Construction of first rDNA molecule (d)

74. (4)

Bt. Cotton and Bt corn both are made resistant to insects pests.

75. (4)

Polymerase elongates DNA chain, nucleases digests nucleic acid, endonuclease makes cuts at specific sites but ligase joins the two DNA molecules

76. (4)

The region where the body of the ovule is fused with funicle is called hilum.

77. (3)

Strobili or cones are found in Equisetum

78. (4)

Column – I

- Eosinophils (a)
- Basophils (b)
- (c) Neutrophils
- (d) Lymphocytes

Column – II

- (iii) Release histaminases, destructive enzyme
- Release granules containing histamine (iv)
- (ii) Phagocytosis
- Immune response (i)

79. (3)

> Glycosidic bond is present in Inulin (Polymer of fructose) Peptide bond is present in insulin (Peptide hormone)

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

28

Do not connect with the sternum

Located between 2nd and 7th ribs

PCR to detect HIV virus

Head of the humerus

80. (1)

NPP (Net primary productivity) = GPP (Gross primary productivity) - R (Respiration) So NPP is always be lesser then GPP.

81. (3)

Column – I

- (a) Placenta
- Zona pellucida (b)
- (c) Bulbo-urethral glands
- (d) Leydig cells
- 82. (3)

Species interaction is not an population attribute.

- 83. (2)

 - (a)
 - (b) Cochlea
 - Eustachian tube (c)
 - Stapes

- Column II
- (ii) Human Chorionic Gonadotropin (hCG)
- (iii) Layer of ovum
- Lubrication of the penis (iv)
- Androgens (i)
- Column I
- Organ of Corti

- (d)

- Column II
- Located on the basilar membrane (iv)
- (ii) Coiled part of labyrinth
- Connects middle ear and pharynx (i)
- Attached to the oval window (iii)

OUNDA

84. (1)

The most abundant protein in the animals is collagen.

85. (1)

- (a) Zygotene (iv) Synapsis
- (b) Pachytene (iii) Crossing over
- Diplotene (c) (ii) Chiasmata
- (d) Diakinesis (i) Terminalization

86. (3)

According to Robert May, the global species diversity is about 7 million.

87. (3)

The half inferior ovary or penguin us condition is formed in plum.

88. (4)

Glucagon is associated with hyperglycemia. Insulin acts upon liver cells, muscles and adipocytes. Insulin is associated with conversion of glucose to glycogen in liver. Glucocorticoids stimulate gluconeogenesis.

89. (1)

Guttation is removal of excess of water in the form of water droplet from the tips through hydathodes at night in herbaceous plants due to root pressure.

90. (4)

The process of cell entering an inactive vegetative stage called quiescent stage (G_0 stage) occurs at the end of M phase. G0 stage is an extended G1 phase.

Section - II (PHYSICS)

91. (4) $x = A \sin \omega t$ $a = -\omega^2 A \sin \omega t$ X $\Gamma/2$ a T/2Phase difference = π 92. (4) $B = \mu_0 ni$ $4\pi \times 10^{-7} \times \left(\frac{100}{0.5}\right) \times 2.5 = 6.28 \times 10^{-4} \, \mathrm{T}$ (2)

93.

FBD of 6 kg block

```
6g - T = 6a
FBD of 4 kg block
       а
```

```
4 g
T - 4g = 4a
Solving (i) & (ii)
a = g/5
```

```
94.
      (1)
```

Average energy density is equally distributed between electrical and magnetic components.

FOUNDATIC

95. (4)

Potential is constant,

 $\therefore |\vec{E}|=0$

96. (1)

Degree of freedom for a monoatomic gas (f) = 3

(i)

(ii)

A

$$\therefore \quad E = \frac{3K_BT}{2}$$

 $\vec{\tau} = \vec{r} \times \vec{F}$ = $(2\hat{k}) \times (3\hat{j}) = -6\hat{i}$

98. (1)

Mean free path = $=\frac{1}{\sqrt{2}n\pi d^2}$

All other options are dimensionally incorrect.

99. (1)

$$E = mc^{2}$$

= $\left(\frac{0.5}{1000}\right)(3 \times 10^{8})^{2} = 4.5 \times 10^{13} J$

100. (2)

L.C. =
$$\frac{\text{pitch}}{\text{No. of divisions}}$$

 \therefore pitch = (0.01×50)mm
= 0.5 mm

101. (1)

Sudden expansion is taking place therefore the process is adiabatic.

102. (1)

$$PV = \frac{m}{M}RT$$

or
$$P = \frac{\rho RT}{M}$$
$$\rho = \frac{PM}{RT}$$
Putting the value

Putting the values we will get $\rho = 0.2 \text{ kg}/\text{ m}^3$

103. (4)

```
235 + 1 = 3 + 89 + A

235 + 1 = 3 + 89 + A

\therefore A = 144
```

104. (1)

$$\mu = \frac{V_d}{E}$$

or
$$\mu = \frac{7.5 \times 10^{-4}}{3 \times 10^{-10}}$$

or
$$\mu = 2.5 \times 10^6 \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$$

105. (1)

9.99 - 0.0099 = 9.9801

But the final answer must contain only two digits after the decimal. So the right answer is 9.98

FOUNDATIC

106. (4)

μ = μ₀(1 + χ) ∴ $μ = 4π × 10^{-7} × (1 + 599)$ $= 2.4π × 10^{-4} T mA^{-1}$

107. (1)

$$E = \frac{KQ}{r^2} = \frac{9 \times 10^9 \times 3.2 \times 10^{-7}}{(15 \times 10^{-2})^2} = 1.28 \times 10^5 \,\text{N/C}$$

108. (2)

```
In case (1)
```

```
| \tan \phi_1 | = \frac{x_L}{R}
In case (2)
| \tan \phi_2 | = \frac{x_c}{R}
But \phi_1 = \phi_2 = \pi / 3
\therefore \quad x_L = x_c (condition for resonance)
So \cos \phi = 1
```

109. (2)

$$h = \frac{21\cos\theta}{r\rho g}$$

If $r_f = 2r$
Then $h_f = \frac{h}{2}$
 $V_f = \pi r^2 h$

$$V_{f} = \pi (2r)^{2} \left(\frac{h}{2}\right) = 2\pi r^{2} h$$

 $\frac{1}{V_i} = \frac{1}{m_i} = 2$

$$m_{f} = 10.0 g$$

110. (2)

$$\beta = \frac{\lambda D}{d}$$
$$\beta' = \frac{\lambda(2D)}{d/2} = 4\frac{\lambda D}{d}$$
$$\therefore \quad \beta' = 4\beta$$

111. (4)

Given logic circuit will act as AND gate.

 $y = \overline{\overline{A} + \overline{B}}$

- y = AB
- :. Truth table should be
- A B Y
- 0 0 0
- 0 1 0
- 1 0 0
- 1 1 1

112. (3)

First two digits of the resistance are decided by the first two strips. Third strip gives the value of multiplier and fourth strip gives the value of tolerance. If we refer to the table for the given colours

FOUNDATIO

 $R = (47 \times 10^1) \pm 5\%$

113. (2)

$$\begin{split} & K = \frac{C}{C_0} = \frac{30 \mu F}{6 \mu F} \\ & \in = \in_0 K \\ & = 8.8 \times 10^{-12} \times 5 \\ & = 0.44 \times 10^{-10} C^3 N^{-1} m^{-2} \end{split}$$

114. (3)

```
If height of the tower is h

(80)^2 - (20)^2 = 2 \times 10 \times h

h = 300 m
```

115. (1)

At
$$h = \frac{R}{2}$$

 $g' = \frac{g}{\left(1 + \frac{R}{2R}\right)}$
 $g' = \frac{4g}{2}$

$$\therefore mg' = \frac{4}{9}(mg)$$

116. (2)

$$x_{cm} = \frac{5 \times 0 + 10 \times 1}{5 \times 0}$$

 $= 0.67 \,\mathrm{m} = 67 \,\mathrm{cm}$

117. (1)

Width of depletion region increases in reverse bias.

118. (3)

If $f = 0.75 f_0$, where f_0 is threshold frequency, photoemission will not take place.

FOUNDATIC

correct answer is (3)*:*..

119. (4)

 θ_0 (limit of resolution) = $\frac{1.22\lambda}{D}$ $\theta_0 = \frac{1.22 \times 600 \times 10^{-9}}{2}$ $\theta_0 = 3.66 \times 10^{-7} \text{ rad}$

120. (1)

$$\frac{X}{10} = \frac{3}{2}$$
$$\therefore X = 15\Omega$$

If length of the wire is 1.5 m then For 1Ω resistance,

length =
$$\frac{1.5}{15}$$
 m = 1.0×10⁻¹ m

121. (2)

Power = (Flux) \times (Area) $=\left(\frac{20W}{cm^2}\right)(20cm^2)$

$$= 400 \text{ W}$$

Energy received in 1 minute $=60 \times 400 \text{ g} = 24 \times 10^3 \text{ g}$

122. (2)

```
If A is small
 \delta = (\mu - 1)A
                            (i)
Also
i + e = \delta + A
but e = 0
 \therefore i – A = \delta
                            (ii)
From (i) & (ii)
 i - A = (\mu - 1)A
       i = \mu A
or
```

$$i_{rms} = \frac{V_{rms}}{X_c}$$

$$X_c = \frac{1}{\omega C}$$

∴ $i_{rms} = 200 \times 100\pi \times 40 \times 10^{-6}$
= 2.51 A □ 2.5 A

124. (3)

$$[Stress] = \frac{[Force]}{[Area]} = \frac{[MLT^{-2}]}{[L^2]} = [ML^{-1}T^{-2}]$$

125. (2)

 $\tan i_b = \mu$ $\mu > 1$ $\therefore \quad i_b > \frac{\pi}{4}$

126. (3)

$$Y = \frac{\text{stress}}{\text{strain}}$$

Stress = $\frac{Mg}{A}$
Strain = $\frac{\Delta L}{L} = \frac{L_1 - L}{L}$
$$Y = \frac{MgL}{A(L_1 - L)}$$

127. (1)

Potential at a general point (r, θ) due to a small dipole is given by

$$V = \frac{1}{4\pi\epsilon_0} \left(\frac{p}{r^2}\right)$$
$$= \frac{9 \times 10^9 \times 16 \times 10^{-9}}{(0.6)^2} = 200 V$$

128. (1) $|f_{\Lambda}|$

$$f_{\rm A} - f_{\rm B} \models 6 \,\mathrm{Hz}$$

$$f_{\rm A} = 530 \,\mathrm{Hz}$$

 \therefore $f_{\rm B}$ can be 524 Hz or 536 Hz

With decrease in tension velocity as well as frequency of B should decrease therefore possible answer is 524 Hz.

OUNDATI

129. (3)

For an electron

$$\lambda = \frac{1.227}{\sqrt{V}} \, mm$$

Where V is accelerating potential

$$\Rightarrow \sqrt{V} = \frac{1.227}{1.22 \times 10^{-2}}$$

or $V = 10^4$ volts

130. (3)

Conductivity of semiconductors as well as insulators increases with increase in temperature.

131. (2)

1 eV = 1.6×10⁻¹⁹ J
∴ E =
$$\frac{10^{-20}}{1.6 \times 10^{-19}}$$
 eV = 0.06 eV

132. (4)

$$\frac{Q_1}{Q_2} = \frac{m_1 s_1 \Delta T_1}{m_2 s_2 \Delta T_2}$$

$$s_1 = s_2, \ \Delta T_1 = \Delta T_2$$

$$\frac{m_1}{m_2} = \frac{\rho(4/3\pi r_1^3)}{\rho(4/3\pi r_2^3)} = \frac{27}{8}$$

$$\therefore \ \frac{Q_1}{Q_2} = \frac{27}{8}$$

133. (2)

 $\rho = \rho_0 \{1 + \alpha(\Delta T) + \beta(\Delta T)^2\}$ Resistivity increases parabolically with temperature.

134. (3)

FOUNDATIC In a transistor, Order of size: Collector > emitter > base Order of doping concentration: emitter > collector > base

correct option is (3) ÷.

135. (3)

Bohr model is valid for uni-electron systems only.

Section - III (CHEMISTRY) 136. (2) In CH_4 carbon has oxidation state of -4 and in CCl_4 its oxidation state is +4. 137. (1) At anode $4\overline{OH} \rightarrow 2H_2O + O_2 + 4e^-$ will occur as \overline{OH} will have lesser discharge energy. 138. (3) Increase in the concentration of reactants leads to a change in Collison frequency. 139. (3) As acetophenone has α -hydrogen and benzaldehyde does not so, this will be a crossed Aldol condensation 140. (2) n-heptane is an unsymmetrical alkane it cannot be obtained in good yield through a Wurtz reaction. 141. (4) UNDATIO Cis-polyisoprene is Natural rubber & hence is a natural elastomer. 142. (2) 7 g N₂ is $\frac{1}{4}$ mole N₂ and 8 g Ar = $\frac{1}{5}$ mole Ar. Mole fraction of N₂ = $\frac{\frac{1}{4}}{\frac{1}{4} + \frac{1}{5}} = \frac{1}{4} \times \frac{4 \times 5}{9} = \frac{5}{9}$ Mole fraction of Ar = $\frac{4}{9}$ Partial pressure of N₂ = $27 \times \frac{5}{9} = 15$ bar 143. (4) Temporary hardness: $Mg(HCO_3)_2 + Ca(HCO_3)_2$ $CO + H_2$: Synthesis gas B_2H_6 : Electron deficient hydride H₂O₂ : Non-planar structure 144. (3) $2Cl(g) \rightarrow Cl_2(g), \Delta H_r < 0$ as bond is being formed & as number of particles are decreasing so $\Delta S_r < 0$. 145. (4) For bcc unit cell $r = \frac{\sqrt{3}a}{4} \Rightarrow r = \frac{\sqrt{3}}{4} \times 288$ 146. (1) Urea on decomposition with water will give NH₃ which on reaction with Cu^{+2} will form $[Cu(NH_3)_4]^{+2}$. 147. (2)

$$CH_{3} - Mg - Cl + CH_{3} \xrightarrow{-C - CH_{3}} \xrightarrow{-H_{3}O^{+}} CH_{3} \xrightarrow{-C - CH_{3}} \xrightarrow{H_{3}O^{+}} CH_{3} \xrightarrow{-C - CH_{3}} \xrightarrow{|CH_{3}O^{+}|} CH_{3} \xrightarrow{-C - CH_{3}O^{+}|} CH_{3} \xrightarrow{$$

148. (3)

Among these, potassium is responsible for transmission of nerve signals by activating enzymes during oxidation of glucose for production of ATP.

149. (4)

 Lu_{71}^{175} has 71 protons, 104 neutrons & 71 electrons.

150. (3)

Boron trifluoride ($\begin{bmatrix} B \\ B \\ F \end{bmatrix}$) has zero dipole moment beryllium difluoride is linear (F – Be – F) will zero

dipole moment.

Carbondioxide (O = C = O) is again linear will zero dipole moment.

1,4-dichlorobenzene (Cl = (Cl = Cl)) will again have zero dipole moment

151. (4)

He₂ has zero bond order and hence does not exist.

152. (3)

Element will atomic molecules 119 does not have any official name. Darmstadtium has atomic number 110.

153. (2)

 $t = \frac{2.303}{4.606 \times 10^{-3}} \log \frac{2}{0.2} = \frac{1}{2} \times 100 = 500 \sec t$

154. (3)

Pig iron can be molded into variety of shapes. All other given statements are incorrect.

155. (2)

Zeta potential or electrokinetic potential is used to determine the stability of a colloidal sol

156. (2)

$$H_2S_2O_8$$
 peroxodisulphuric acid (HO $-S - O - O - S - OH$)
 $H_2O_8 = 0$

157. (4)

$$CH_{3} - CH - CH_{2}CH_{2}CH_{3} \xrightarrow{\overline{OH}} \begin{array}{c} CH_{3} & H \\ & | & | \\ C & = C \\ & | \\ Br & H & CH_{2}CH_{2}CH_{3} \\ & H & CH_{2}CH_{2}CH_{3} \end{array}$$

Follows Zaitsev rule, is a β -Elimination reaction & is Dehydrohalogenation reaction also. This is not a dehydration reaction.

158. (3)

Buckminster Fullerene contains twenty hexagonal and twelve pentagonal rings.

CO₂ as dry Ice is used as refrigerant for ice-cream and not gas.

ZSM-5 (Zeolite of Molecular Sieve -5) is a shape selective catalyst & used for conversion of alcohol to petrol.

CO is a colorless & Odorless gas.

$$\bigcirc CH_2 - CH = CH_2 \xrightarrow{O_3} \bigcirc CH_2 - CH_2 + H \xrightarrow{H_2O} CH_2 - CH_2 + H \xrightarrow{H_2O} H = CH_2 \xrightarrow{H_2O} CH_2 - CH_2 + H \xrightarrow{H_2O} CH_2 +$$

160. (1)

Paper chromatography is based upon the principle of partition chromatography.

161. (1)

CO is a neutral oxide BaO is a basic oxide

BaO is a basic oxide

 Al_2O_3 is an amphoteric oxide

 Cl_2O_7 is a strongly acidic oxide.

162. (3)

1 g Mg is
$$\frac{1}{24}$$
 moles so atoms $=\frac{1}{24} \times N_A$
1 g O₂ is $\frac{1}{32}$ moles so atoms $=\frac{1}{32}N_A \times 2 = \frac{1}{16} \times$
1 g Li is $\frac{1}{7}$ moles so atoms $=\frac{1}{7} \times N_A$

1g Ag is $\frac{1}{108}$ moles so atoms $=\frac{1}{108} \times N_A$. As per this calculation, Li will have the highest number of atoms

NA

OUNDATIC

163. (3)

Lysine is a basic amino acid.

164. (1)

Spin only magnetic moment of $Cr^{+2}(3d^4)$

 $\sqrt{n(n+2)}BM = \sqrt{24}BM = 4.91BM$

165. (2)

Sucrose on hydrolysis gives $\alpha - D - glucose$ and $\beta - D - Fructose$

166. (4)

Ethanol + Acetone is a positive deviating solution

167. (3)

3° cation is more stable than 2°-cation due to Hyperconjugation

168. (4)

(Ionic Product) ip = $[Ni^{+2}][\overline{O}H]^2 = 2 \times 10^{-15}$ $[Ni^{+2}][0.1]^2 = 2 \times 10^{-15} \implies \text{New solubility} = 2 \times 10^{-13}$

169. (2)

Cetyl trimethyl ammonium bromide is a cationic detergent.

170. (2)

 $\Delta T_{f} = 5.12 \times 0.078 = 0.4 K$

171. (3)

Oxidation state of Cr in CrO_4^{2-} and $Cr_2O_7^{2-}$ are both same with a value of (+6)

172. (2)

Carboxyhaemoglobin is more stable than oxy haemoglobin as CO is a strong field ligand.

173. (4)

 $\Delta G^{\circ} = -RT \ln K_{eq} = -8.314 \times 300 \times \ln(2 \times 10^{13})$

174. (4)

The order of ligands field strength as per spectro-chemical series is $SCN^- < F^- < C_2O_4^{2-} < CN^-$

175. (2)

176. (4)

 $q = 0, \Delta T = 0$ and w = 0 as there will be no work against vacuum. As q = 0 and w = 0 so, $\Delta U = 0$ which is why $\Delta T = 0$

177. (4)

 $Ca^{+2} + 2e^{-} \rightarrow Ca$

2F charge is needed to produce 40 g Ca

So, 1 F charge is needed to produce 20 g Ca

178. (1)

As per concept only NaCl will crystallise out on passing HCl and CaCl₂ and MgCl₂ will remain in solution as they are more soluble.

179. (4)

$$\bigcirc$$
 OCH₃+ HI \rightarrow OH + CH₃I

180. (4)

Carbylamine test is given by 1°-amines, both aliphatic & aromatic.